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Abstract, Effects of mutudd intecactions ¢u the conductvity temsor and the density of stoes
have been studied in the waakly localized regime of disordered tunnelling saperlattices. The
anafytical results for the interaction corrections to both quantities ase obtained as functions of
the infeslaver coupling ¢ and the temperature 7, We show that the temperature dependences of
both corrections change from three-dimensional to two-dimensiogal behaviour with decreasing
r, and that the disnesssional crossover occuss at ¥ ~ [fw, with 7; the relaxation time due 1o
impurity scattering. -

1. Introduction

In recent years constderable progress hias been made in saderstanding the nature of electronic
states in disordered systems, espectally disondered metals. The scaling theory has been
successfully applied to the localization problem [1-3]. One of the Important results of the
scaling theory is that, In a two-dimensional (2D} system, there are no wue metallic states, no
matter how small the disorder is. The conductance decreases either logarithmically {weak
localization) or exponentially (strong localization) when the size of the system is scaled
down. By contrast. in a three-dimensional (3D) aystern, there is a metal-ingulator fransition
on changing from weak localization to strong localization. One of the characteristics of
weak localization is the decreasing conductivity with decreasing temperature. In the region
of T & 1/t with 1 the relaxation time due o impurity scattering, the localization
contributions fo conductivities in 2D and 3D systems vary directly as In T and T2,
respectively. The value of p is usually hetween 1 {electron~electron scattering) and 2
{electron~—phonon scattaring).

Another disorder-related quantum correction to the conductivity has been proposed based
on & different theory involving electron—electron correlations {4]. The interaction theory
[4-77 has revealed that there exists an essantial interplay between mutual interaction and
randomness in disordered systems. As pointed our by Fukuyama [8], there exist two different
diffusive processes that have very important influences on transpart praperties. One is the
particle~particle diffusive process. It can be diagrammatically represented by a maximally
crossed diagram, and is often called 2 Cooperon. The other i3 the particle-hole diffusive
process. It is diagrammatically represented by a ladder diagram, and is called a diffuson.
The Cooperon responsible for weak localization effects describes the interference effects
between Bloch waves, and is very sensitive to perturbations that destroy the time-teversal
symmetry. By contrast, the diffuson is directly related to the density—density corralation
function, and is insensitive to perturbations that destroy the time-reversal symmetry. Both
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the Cooperon and the diffuson would be coupled with the dynamical scattering due to mutual
interactions and lead to singular corrections to the density of states, the conductivity and
other physical quantities. The ditfuson will play a dominant role if the inverse screening
radius, «, of the mutual interaction is much smaller than 2kg, with ks the Fermi momentum,
ie. kK <« 2kg. One of the important conclusions of the interaction theory is that the
temperature dependences of the interaction corrections to both the conductivity and the
density of states behave as In T and +/T for 20 and 3D systems, respectively, as long as
the condition T < 1/1p is satisfied.

There already exist some theoretical works concerned with the weak localization effects
in anisotropic systems [9-11]. An important conclusien is that the scaling function and
critical behaviour near the localization transition are unaffected by anisotropy, i.e.

doyfo, =80, /0, (I

where o, and o, are the Boltzmann conductivity contributions along the u and v directions,
respectively, and 8o, and 8o, are the corresponding localization parts. Superlattices with
layered structure are highly anisotropic systems. Szott et af [12] have calcnlated the weak-
localjzation correction to conductivity in the low-frequency limit for tunnelling superlattices
and concluded that, even though the effective-mass approximation along the growth direction
might not be valid, equation (1) would hold. In contrast to the conclusion of Szott et al,
Lu and Horing [13] pointed out that the scaling relation (1) holds only for systems with
an anisotropic effective mass along differing directions, and it does not hold for tunnelling
superlattices with small miniband width.

Up to now, anisotropic effects of mutual interactions for disordered superlattices have not
been taken into account. They are expected to have important influences on the transport
properties. In this paper, following Fukuyama [6,7], we explore in detail the effects of
mutual interactions for disordered tunnelling superlattices under the condition k& > 2kg,
in which both the particle-hole and the particle—particle diffusive processes should be
considered. We have obtained analytical expressions for the interaction corrections to the
conductivity and the density of states to the lowest order of mutual interaction. Their
temperature dependences are found to change from 3D to 2D behaviour with decreasing
miniband width.

This paper is organized as follows. In section 2, we will present the model Hamiltonian
with mutual interactions and the Boltzmann conductivity for a disordered tunneiling
superlattice. The evaluations for the interaction corrections to the self-energy and the density
of states will be presented in section 3. We will, in section 4, calculate and discuss the
interaction correction to the conductivity. Finally, a brief summary is given in section 5.

2. The model for a tunnelling superlattice

Let us consider a disordered tunnelling superlattice, the miniband of which is described by
a tight-binding model. The Hamiltonian for this system has the form:

H 1
H o= Z €k Cro+U Z Z exp(—1q-R;)c§+q_dcka+§ Z Z v(q)c;c"_i_q’aczi_q,a,ck'azcka
ko i kgo kk'q g0’

(2)

where the band energy is given by

&x = (ki /2m) + t{1 — cos(k.a)]. (3)
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In equation (2), the first term is the kinetic energy of the electrons. the second one represents
the interactions with normal impurities, and the last one stands for the interactions between
electrons. U is the strength of the impurity patential whose force range is assumed to be
point like. The impurities are located randomly and R; is the impurity site. In equation
(3), ky and k. are the wavevectors along the planar and z directions, respectively, « is the
superlattice periad, ¢ is the interlayer coupling, and so 2¢ is the width of the superlattice
miniband. In this work, since the Fermi energy is assumed to be much larger than the
bandwidth, i.e. € 3> 2¢, the density of states at the Fermi energy per spin is Ny = m/(2ma)
and the density of charge carriers is given by n = meg/(ma) [12]. If the concentration of
impurities »; is so small that ¢¢ 3> (275) 7, we can take the Born approximation and get
(2?0)_1 = :rz:niUzN;. .

According to the well known Kubo formula, in the absence of mutual interactions,
the Boltzmann DC conductivity tensors can be easily calculated and are given by [12]
o) = 262N1Dﬂ and o, = 2¢*N|D,, where Dy = epm/m and D, = t2a2r0/2 are the
diffusion constants along the planar and z directions, respectively.

3. Interaction corrections to the self-energy and the density of states
We first study the diffuson and the Cooperon in an anisotropic disordered system. They
are diagrammatically represented as in figures 1{a) and (5), respectively. The dashed lines

with crosses represent the averaging procedure over the configuration of impurities, whose
average concentration is n;. The solid lines are the Green functions given by

G(ka iEn) = [iEn - &k +.i(2r0)']sgln En]_l 7 . (4)

where &, = ¢, — €p. and ie, = 1(2n 4 1)x T is the Matsubara frequency.
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For an isotropic disordered system, Fukuyama [7] has derived explicit expressions for
the diffuson and the Cooperon. Using a similar procedure, we can calculate the functions
for them for a tunnelling superiattice with an arbitrary band structure. The series of ladder
diagrams shown in figure 1{a) is summed as

D(g. i) = mU{1 = mUPA(q, ian)]™ - )
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where A(g, iwy) is defined by

Algiw) =Y Gk + g, ie, + i) G (k. ic,) )
k

and w; = 2[xT. Since both D#qﬁ (4 =x.y,z) and |wy| are assumed to be much smaller
than 1/1p, when the product of two Green functions on the right-hand side of equation (6)
is expanded as a power series of g and [}, only their lowest-order terms need to be kept.
We first consider the case of ¢, < 0 and €, + a4 > 0. In this case, substituting equation
{(4) into equation (6), and replacing the summation over & in equation (6) by the integrai
[ N1 d&, we obtain

N : -1 . -1
Aio) = 2 [ a [ a0 (ie,, —f - ig) [ (ien —ge+ z%o)

.o\ =2 .\ =3
1 1
. . _ . k . 3 - = —
+ianl (e, -t 3 )+l o (i -5 5) | ™
where v(k) = dep/0k is the velocity for the electron in the state k, and the integration
with respect to £ is over the angle between v(k) and the z axis. Equation (7) is easily
evaluated, yielding

Alg, i) = 2 oN1 (1 ~ |er|%o — Dyq,T0) (8)
where Duqﬁ = Duqﬁ + D.g?. Substituting equation (8) into equation (5} and using the
relation (279)~! = wn;U2N;, we get the final expression for the diffuson as

D(q. ien) = [27 Ny T3 (Dpgl + lex)] ™ ©

Tt is easily shown from a similar derivation that, in the case of ¢, > 0 and oy + ¢, < 0,
the same result as equation () holds; but in the case of €,(e, + w;) > 0, the result is quite
different, A(g, iw;) = 0, and so D(q, iw;) = Qe Ny70)~".

Following the derivation as above, we can obtain the expression for the Cooperon as
shown in figure 1(b):

Clg, i) = 2 Ni7g(Dyg), + ol + 7, N7 for enlen +wp) < 0. (10)

Here 7, is the dephasing time. If the diffusion constant is isotropic, D, = D for any p,
equations (9) and (1) reduce to the isotropic results obtained by Fukuyama [7]. It should
be emphasized that our derivation above does not depend on any special band structure. So,
we have demonstrated that both equations (9) and (10) are suitable for arbitrary dispersion
relations provided that the condition €, (g, + ;) < 0 is satisfied.

We now calculate the interaction correction to the self-energy. In disordered metals,
the mutual interaction v(g) is dynamically screened and changed to the effective interaction
v(g, iwy). For a clean system the lowest-order contributions in interaction with the self-
energy are given by the well known Hartree—Fock processes. In the presence of randomness,
however, these Hartree-Fock processes are coupled with diffusons and Cooperons, and
the self-energy corrections due to the mutual interactions are given by figure 2 in [6],
the corresponding effective interaction constants being parametrized as g1, g2, g3 and g,
respectively [6). As an example, the g, processes (see figure 2) represent the Fock processes
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coupled with the diffusons, and the contribution to the self-energy from figure 2(a) can be
evaluated as follows:

§Sa=~T) Y vla,iw)DXg, oGk +q, ie, + i) G K, i€,)
wy k’k,”q
x G(k' + q, 16, + 1) G k", ie, ) G(E" + g, ien + ity). an
Substituting equations (4) and (9) into equation (11), and taking the approximation

Gk + q,i¢, + i) = =2itgsgn(e, + @), we replace the summations over k' and k"
by the integrals [ N{d&y and [ Ny déy, respectively, and get

§Ti 4T h K
?;2 = Tlgl Z(zn)“3f0 2mqy dg) f dg, (Dygi + D:q? + le])?
oy -

—Tl' a
Tg D '
-8 ey |12 tan™! ( z) 12
TEND HDUZ Z [eor] (12)
where Zy = —i(270)"'sgn(e,) is the self-energy due to impurity scattering in the absence

of interactions, and Ij = (Dy7)"/* is the mean free path along the planar direction. The
sumration over «y; is from 27T to 1/7g. In the region of T « 1/7g, the summation in
equation (12) can be replaced by integration over w, yielding

Z1a . 2g1
—_—= - F{try, T1p) ' (13
To 472N, Dy(Dito)/? {70, )
Lo e .~
s ~
g . ~ . N
/ \
/ N
TV NI, ‘
80 e el By N s
i TR -
\a) 1¥72]

Figure 2. Interaction comrections to the self-energy due to g; processes,

where the functfon F{x,y) is given by

2 X xl 1/2
F(xv )’) = ; {taﬂ_l (':'/E) - (2??_’)’)["2 tan_] Ii(—&?) J}

+ —-{1n(2 + 7%x%) — In(dry + 72xH)). (14)

72

Since the evaluation of the contribution for figure 2(b) is very similar to that for figure 2(a),
we simply write down its expression:

Zn o &
Eo 4.71'2N1D;| (DZT{])UZ

F(tve, To). (15)
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Summing equations {13) and (15), we obtain the interaction correction to the self-energy
due to g; processes, §5| = X1, 4 8 X1y, as follows:

8% _ g
Eo 4:’1‘2N1 D|| {DZ‘EU)UZ

F(Z‘To, T1). (16)

Cooperons are coupled with the interactions as shown in g» and g4 processes. Their
contribution will vanish in the region of T < 1/7,,, where 1, comes from perturbations that
destroy the time-reversal symmetry. In the case of 1/7, € T <« 1/7. calculations similar
to that for g, processes give the contributions due to g; processes (i = 2, 3, 4):

§~§3 = £2 F(ttg, Tto)
Ty 4wiNiDy(Dr)t2
555 —2g;
— = = F(tw, T
Ty Am2INIDy(D.ro)? (. To)
)3 -2

2 £4 F(ttg, Tto).

_ET - 4II'2N;D||(DZ'L'0)”2
By summing these 8%, / Xy, the total interaction correction to the self-energy is given by

8L g
Eg - 4R2N1DH(DZTD)1/2

F(tr, Try) {(17)

where g = g1 + g2 — 2(g3 + g4) with the factor —2 coming from the spin degeneracy in
the Hartree processes of our spin-independent interactions. If we define X = 3y 4 86% =
—i(27)"'sgn(e,), the renormalized scattering rate due to mutual interactions can be obtained
as

1 l g
-—=—11 F(n,T . 18
il ( + 472N, Dy (Do) 12 (tTo 'Co)) (13)

The quantum correction to the density of states at the Fermi surface, N /Ny, due to
interactions is straightforwardly obtained from a knowledge of 8E /X, through the relation

SN/Np=—3%/Eq. | (19)

This equation has been shown to hold for isotropic systems [7]. Here we will show
that equation (19) is a general relation in the lowest approximation and it still holds for
anisotropic layered systems. To see clearly the relationship between dN/Np and 6%/ Xy,
we start from the definition of the density of states at the Fermi surface,

2 .
= =1 Rk, 0
N === mzk:c; (k,0) (20)
where GR(k,0) = (=& — E®)~! is the interaction-correction retarded Green function,
TR = —i(27)7! is the interaction-correction retarded self-energy, and
Im =R ImEZXN1 +8%/%
Im G¥(k, 0) = m (Im E5)(1 4+ 8%/ %) @n

&+ ImTRE " g2+ (ImSH(1 +535/%)?
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Figure 3. The temperature dependences of the function
F{rty, T1p) for several values of fzy. For tzg =
0.03, the lowest curve shows logarithmic behaviour,

: ! N —~_ . while for t7p = 10 the top curve is square-root-like,
0 00z 004 006 008 D10 correspanding to zp and 30 behaviour, respectively. The
T middie curve corresponds to r7p = 1.
with B} = —i(2%)~! being the retarded self-energy due to impurity scattering. The

expansion of equation (21) to the lowest-order approximation in 8% /2 is
“ImEF 8% 2(ImEX? 8%

& + (Im 252 ( o E+(m ‘23‘32%)
Substituting equation (22} into equation (20), and replacing the summation over & in
equation (20) by the integral [ N{ d&g, we finally obtain

N = Np(l =38E/Zp) or SN/Npg =—85/%
where Ny = 2N, and we have used

. 1
w0 B (mEh)?  fm zR[

Im GR(k,0) = (22)

8(&k)

and
li : !
mE50 [£2 + (m S22 2(Im 2“)2 |
It is worth emphasizing that the derivation above does not also depend on the energy band
structure, so that equation (19) is a general relation.

Now, we have obtained the analytical expressions for the interaction corrections to
the self-energy and the density of states at the Fermi surface for a disordered tunnelling
superlattice. They depend on the interlayer coupling ¢ and the temperature 7. In order to
compare our results with that of 2D and 3D systems, we take the following limits of the
function F(x, y}: : ; .

(. y) = { I— @y > Ly

’ ~@/yD @y P Ly <D
The function F{r1p, T1p) is shown in figure 3. From equation (23), we can see that, when
the interlayer coupling 7 is so large that z 3> 1/7, the first limiting resuit corresponds
to anisotropic 3D behaviour; while when ¢ is small enough so that ¢+ « (T/1)!? «
1/7, the second limiting result corresponds to isotropic 2D behaviour. Therefore the
interaction corrections to self-energy and density of states at the Fermi surface behave
as 3D {proportional to 7'/?), changing to 2D (proportional to In T} when the bandwidth 2
decreases from £ 119101 « (T/10)'2, and a dimensional crossover occurs at £ ~ 1/7.

3(&r).

(23)
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4. Interaction correction to the conductivity

The conductivity tensors are determined by the well known Kubg formula

2
Oap{w) = -% Im( Z Ve {R)vp(RHTI(K. E; iwl)im,,-»cu-i-iﬂ'*‘) (24)
kR

where @ is the frequency of the applied electric field, w, = 2Ax T, and IT(k, k' tw,) is
the polarization part due to mutual interaction and impurity scattering. The interaction
corrections to the conductivities due to g; processes (i = 1,2, 3,4) have been given by
figures 4-92 in [6]. For the anisctropic layered systems under consideration, we have
calculated contributions from these processss, and the evaluations are very elaborate and
lengthy. As an example, in the appendix, we will evaluate only the contribution from one
of the g, processes. For the contributions from other processes including g; (i = 1, 2,3, 4),
since their derivations are somewhat similar to that given in the appendix, we simply write
down their expressions as follows:

S| Joy = —6g1 By S0l fo, = ~12g1 B, (25a)
Soffoy = —8g2A + 188:Cy 802 fo, = ~8ga A +36g,C, (25b)
80} foy = 12g3 By 802 /0, = 24g3 B, (25¢)
8oy foy = 16g4A — 364,Cy 8o} fo, = 16g4A — T284C, (25d)
where
4z Ta —a
A= po Z Zw!(D'uqﬁ T+ T, 1) 3 (26a)
wi=0 g
4xTa ) 2 -4
By = > Dygien(Dugl + ) . (26b)
w>0 g
B = 4zTa D.a? a _a
= —=3" 3 Deglou(Dygs + ) (26¢)
w=0 q
AnTa 2 2 wly=4
Ci = >  DigieuDugl + e+, (264)
w>l q
dnTa 2 2 e
C; = D Dglan(Dugl + e+t (26e)
wsl g

In the region of 1/t, <« T « 1/7p, all the summations over «; and g in equations (26a)—
(26¢) may be evaluated. We obtain

o~ _ A fUn T
Bi=C1=3 = %28 D, D) @)
B, = $(to, T 7o) @75)

= 9672N, Dy(Dy1o) 12
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Here the functions f(x, ¥) and ¢(x, y} are given by

=)

Flx,y) = % [tan'l (%) — @) ™!

+ V2x[In@ + 7%x%) — In(dmy + 72x%)] (28)
= 2t () 2 Y2t | i’iz)m_
qb(x,y)r—Jr [tan (\/2) (2xy)*tan ( &) |
+ 2a (2 A dry) ) — (e 27N ' (29)

Substituting equations (27a) and (27b) into equations (25a)-(25d), we get the total
corrections to the conductivities, S0 = Y 1., doj and 8oy = S bl

Soy _ g
o) 82N\ Dy(D,o)V/

5 f (t70, T70) ' (302)

g2—284
272N Dy (Do) 72

ao,
. 3 (tto, T1o) —

& 872N, Dy(D;70)172 [f (0, Tro) — 970, TTo)].

(308)

Equations (30a) and (30b) are the main results we obtain in this section. They are
general expressions for the interaction corrections fo anisotropic conductivities in disordered
tunnelling superlattices provided that the band theory and the Bloch-Boltzmann picture hold
true. So, it is expected that in the two limiting cases of 17y 3> 1 and t7p « 1, equations
(30a) and (304) should reduce to the well known forms for 3D and 2D systems, respectively.
To verify this point, it is necessary to discuss the asymptotic behaviour of functions f(x, ¥)
and ¢(x, y) given in equations (28) and (29). First, in the limit where x 33 1, together with
y &1, we have

Fx ) =6x, 3 =1—Qay'? (3D

which is independent of x. Secondly, in the opposite limit where x> « y « I, we have

fx,y) = —v2xIn(27y) - ' (32)
G, ¥) = V2753 3Y) < f(x, ). ‘ @33

‘With the aid of equations (31)-(33), the expressions for doy /o and &g, /o, become

50’|{ 50‘5 g 1
—_— == 2 T1o)/% — 1 for T € 1/mp &« ¢ 34
o 0 3H2Nan(szu)”2[( 7Tw) ] o ‘<< /i< 69
and -
Soy g
— =———In2nT)
q 4JIZN102D|| 1/2
s 5 fort L (T/0)"* € /. {33)
9% _ 81 %84 (27 T't0)

o, wiNiaDy
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For large ¢ {t7o 3> 1) the system can be regarded as an anisotropic 3D system. In this
limit the interaction correction to the conductivities given in equation (34) is proportional to
(2 T} /? — 1, which is just the familiar behaviour of a 3D system. Moreover, the scaling
relation (1) holds in this case, indicating that for anisotropic 3D systems the scaling theory of
localization and the interaction theory have the same conclusion that the scaling behaviour
is unaffected by anisotropy. The latter is a new result in the present paper, while the former
is well known. On the other hand, for small 7 (t7g < 1) the tunnelling superlattice becomes
a quasi-2D system, and equation (33) vields doy /oy o In(2m T1g), which is characteristic
of 2D behaviour. It is easy to see that in this case the scaling relation (1) no longer holds.
Its invalidity may stem from the consideration that when the interlayer coupling 7 is small
enough, the Bloch-Boltzmann picture breaks down for the out-of-plane conduction. Finally,
in the intermediate region of ¢ between the two limits, the analytical expressions (30z) and
(30%) for 8oy and 8o, describe the crossover behaviour of their temperature dependences
from 3D to 2D sysiems with decreasing ¢. It is worth mentioning that in this transition region
from 3D to 2D behaviour the scaling relation (1) does not seem to hold. This indicates that
the conclusion that the scaling behaviour is unaffected by anisotropy is suitable only for the
limit of 1o > 1.

5. Summary

In this paper, to the lowest order of mutual interaction, we have calculated the quantum
corrections to the self-energy, the density of states at the Fermi surface and the anisotropic
conductivity tensor in a disordered tunnelling superlattice. The analytical expressions for
these interaction corrections as functions of ¢ and T are obtained for the first time. The
temperature dependences of these corrections are shown to be dependent upon the interlayer
coupling ¢ and change from 3D to 2D behaviour with decreasing ¢.

In the weakly localized regime of isotropic disordered systems, the expansion parameter
for the perturbation theory is (eptg)~ . However, in the present model, which may be highly
anisotropic, the small parameter is chosen as [N; Dy(D,7)"/?]™!, which is proportional to
(epto) ™' (¢T0) !, if t = 1/7y; while in the case of ¢ « (T/7)!/* « 1/1p, the small parameter
becomes (NyaDy)~!, which is proportional to (epzy) .

Another conclusion of our work is that, in the interaction theory, the scaling relation
(1) does not generally hold, but does hold only for the limit of ¢t » 1/79, which is the
same as in the weak-localization theory [13]. In both theories, the invalidity of equation
(1) is apparent from the smailness of the miniband in the tunnelling superlattice where the
anisotropic effective-mass approximation is not appropriate.

{a) §:])] le)

Figure 4, A diagram for conductivity among g processes.
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It is important to point out that, in the extreme 2D limit, the mean free path for motion
along the z direction I; ~ ftpa is much less than the lattice spacing and therefore much
less than the Fermi wavelength, invalidating a quasiclassical treatment, which leads to the
failure of Boltzmann transport theory in this limit. Another limitation of our theory is that
the model of isotropic impurity scattering is not very realistic in the extreme 2D linit, when
the scattering cross section for processes involving momenta k and k' parallel will surely
be different from the ones involving momenta changing from parallel to perpendicular to
the layers. Considering these limitations, some refined theory is necessary.
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Appendix

As an example the contribution to the conductivity from the process of figure 4{(a) in
[6], which is one of the g; processes, will be evaluated. The frequency and momentum
dependences are explicitly shown in figure 4, where R and A represent the retarded and
advanced Green functions, respectively, and cw, > 0.

The polarization part [1{k, &’ iw;) in this diagram is

T(k, K i) = =217 ) 3 v(g, io)T(q, ien) D(g, iws + ier)

[ ST
x Gk, ien)G(k, i€, + iw )Gk + q, i€ + icwp + iwy)
x G(K', ie) G, ey + 10, )G (K + q, i€n + iy, + i) (Al)

where I'(g, iew)) is the function for the interaction vertex, and is easily shown to be
I'{g, i} = [to(Dygp, + lax)] ™. (A2)
Substituiing equations (9) and (A2) into equation (A1), we have

2 ,
— 3 u (R u (R TL (R, K o)
Y
€2T28 1

= —_— 2 T 2 =t
T Zq:;;(ﬂn% + )™ Dpgy + lor + @3])

x 3 ke Gk ien) Gk, ien + i00)G (R + g, ity + i, - ieor)
k .
Xy K.G(PE, i, )Gk, ie; +iw, )Gk + q,ie, + i, + iax). (A3)
kl’

The condition €, (e, + @y + o) < 0 as well as (¢, + @ )(€x + @y + @) < 0 leads to the
following classification of the regions of €, and w;: i

iy wr < —an, 0 <€ < —w —wi,
(i) wr >0, —wy, —ey < € < —awy.
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They correspond to figures 4(5) and (¢) respectively. In the summations over k and &’ in
equation (A3}, by expanding in terms of ¢ to the lowest order and replacing the summations
over k and k' by the integrals [ N, d& and [ N; dfy, respectively, we obtain

S R IR, K ) = 22T
kK mw

- —Dygi(wr + ;)
AP

p < —toy, 1&){])2(,0“(;3 -+ ICOI -} G))LD

1gjy@r
-+ . Ad
Z (Dugl + ln)2(Dpg2 + oy +€v1l)) 4y

wr >0

We expand equation (A4) in terms of wy, yielding

- va(k)vx(k M1k, K; iwn) = 00) ~ 27981791
Y kE mew
X)) e _ Do @y + O(wd) (AS)
= 250 (Dugl + o))

where O(0) and O(w?) represent the zeroth-order and second-order terms of w,, respectively.
Substituting equation (AS) into equation (24), we get the contribution to the planar
conductivity from this diagram:

aa"(ﬁgure 4)/0'" = 331 B“.
A similar evaluation leads to
o, (figure 4) /0, = 6g1 B;.

The expressions for By and B; bave been given in equations (265) and (26¢), respectively.
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