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Abstract. Effects of mutual interwtions on the conducrivity tenwr and the densiry of stus 
base been studied in tbe weukly localized regime of disordered Nnneiling supedattim. The 
analytical results for the interaction colrections lo both quantities m obtained a$ functions of 
the iarerlayer coupling I and the temperature T. We show lhat the tempemture dependences aF 
both corrections chsnge from threedimensional to twodimensioad behaviour with decreasing 
r,  and mar the dimrsional crossover cccucs ai t - I/q. with 50 the relaxation time due to 
impurity scattering. 

1. Introduction 

In recent years considerable progress has been made in understanding the nature of electronic 

successfuiiy applied to the localization problem [l-31. One of the important results of the 
scaling theory is that, in a two-dimensional (2D) system, there are no true metaIlic states, no 
matter how small the disorder is. The conductance decreases either logarithmically {weak 
localization) or exponentially (strong localization) when the size of the system is scaled 
down. By contrast. in a three-dimensionat (30) system, there is a metal-insulator bansition 
on changing from weak localization to strong localization. One of the characteristics of 
weak localization is the decreasing conductivity with decreasing temperature. In the region 
of 2' < l/ro. with rv the relaxation time due to impurity scattering, the localization 
contributions to conductivities in 2D and 3D systems vary directly as In T and TPI', 
respectively. The value of p i s  usually between 1 (electronslectron scattering) and 2 
(eleceon-phonon scattering). 

Another disorder-related quantum correction to theconductivity ha been proposed based 
on a differeot theory involving electron-electron correlations [43. The interaction theory 
[4-71 has revealed that there exists an essential interplay between mutual interaction and 
randomness in disordered systems. As pointed out by Fukuyama [8],  there exist two different 
diffusive processes that have very important influences on transport properties. One is the 
particle-particle diffusive process. It can be diagrammatically represented by a maximally 
crossed diagram, and is often called a Cooperon. The other is the particIe4ole diffusive 
process. It is diagrammatically reprexnted by a Iadder diagraq and is called a diffuson. 
The Cooperon responsible for weak localization effects describes the interference effects 
between Bloch waves, and is very sensitive to perturbations that destroy the timereversaf 
symmetry. By conhast, the diffuson is directly related ta the density-density correlation 
function, and is insensitive to perturbations that: destroy the time-reversal symmetry. Both 
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states in disordered systems, especially disordered metals. The scaling theory has been - 
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the Cooperon and the diffuson would be coupled with the dynamical scattering due to mutual 
interactions and lead to singular corrections to the density of states, the conductivity and 
other physical quantities. The diffuson will play a dominant role if the inverse screening 
radius, K ,  of the mutual interaction is much smaller than 2kF, with kp the Fermi momentum, 
i.e. K << 2kp One of the important conclusions of the interaction theory is that the 
temperature dependences of the interaction corrections to both the conductivity and the 
density of states behave as In T and f i  for 2D and 3D systems, respectively, as long as 
the condition T << l/ro is satisfied. 

There already exist some theoretical works concerned with the weak localization effects 
in anisotropic systems [9-11]. An important conclusion is that the scaling function and 
critical behaviour near the localization transition are unaffected by anisotropy, i.e. 

Y H Yang et a1 

zap jU& = 8U"IU" (1) 

where up and U, are the Boltzmann conductivity contributions along the /I and U directions, 
respectively, and zap and Suu are the corresponding localization p m .  Superlattices with 
layered structure are highly anisotropic systems. Szott et a1 [I21 have calculated the weak- 
localization correction to conductivity in the low-frequency limit for tunnelling superlattices 
and concluded that, even though the effective-mass approximation along the growth direction 
might not be valid, equation (I) would hold. In contrast to the conclusion of Szott et al, 
Lu and Horing [13] pointed out that the scaling relation (1) holds only for systems with 
an anisotropic effective mass along differing directions, and it does not hold for tunnelling 
superlattices with small miniband width. 

Up to now. anisotropic effects of mutual interactions for disordered superlattices have not 
been taken into account. They are expected to have important influences on the transport 
properties. In this paper, following Fukuyama [6,7], we explore in detail the effects of 
mutual interactions for disordered tunnelling superlattices under the condition K >> 2kF, 
in which both the particle-hole and the particle-particle diffusive processes should be 
considered. We have obtained analytical expressions for the interaction corrections to the 
conductivity and the density of states to the lowest order of mutual interaction. Their 
temperature dependences are found to change from 3D to 2D behaviour with decreasing 
miniband width. 

This paper is organized as follows. In section 2, we will present the model Hamiltonian 
with mutual interactions and the Boltzmann conductivity for a disordered tunnelling 
superlattice. The evaluations for the interaction corrections to the self-energy and the density 
of states will be presented in section 3. We will, in section 4, calculate and discuss the 
interaction correction to the conductivity. Finally, a brief summary is given in section 5. 

2. The model for a tunnelling superlattice 

Let us consider a disordered tunnelling superlattice, the miniband of which is described by 
a tight-binding model. The Hamiltonian for this system has the form: 

where the band energy is given by 

€k = (ki/2m) f t[l - cos(k,a)]. 
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In equation (Z),  the first term is the kinetic energy of the electrons, the second one represents 
the interactions with normal impurities, and the last one stands for the interactions between 
electxons. U is the strength of the impurity potential whose force range is assumed to be 
point like. The impurities are located randomly and Rj is the impurity site. In equation 
(3), ,411 and IC,  are the wavevectors along the planar and z directions, respectively, a is the 
superlattice period, t is the interlayer 'coupling, and so 2t is the width of the superlattice 
miniband. In this work, since the Fermi energy is assumed to be much larger than the 
bandwidth, i.e. E F  >> 2, the density of states at the Fermi energy per spin is NI = m / ( k a )  
and the density of charge carriers is given by n = mEF/(xa) [U]. If the concentration of 
impurities nj  is so small that EF >> (Zro)-', we can take the Born approximation and get 
(2rO)-' = nnjU2N1. 

According to the well known Kubo formula, in the absence of mutual interactions, 
the Boltzmann DC conductivity tensors can be easily calculated and are given by [I21 
"11 .= 2e2N1D~ and 0; = 2e2N1D,, where Dl] = E F T O / m  and D, = tza2ro/2 are the 
diffusion constants along the planar and z directions, respectively. 

3. Interaction corrections.to the self-energy and the density of states 

We first study the diffuson and the Cooperon in an anisotropic disordered system. They 
are diagrammatically represented as in figures I (a )  and (b), respectively. The dashed lines 
with crosses represent the averaging procedure over the configuration of impurities, whose 
average concentration is ni. The solid lines are the Green functions given by 

G ( k ,  icn) = [i% - & +,i(2so)-]sgn~~l-l (4) 

. .  
where e k  = - CF, and i& = i(2n + 1)xT is the Matsubara frequency. 

+ ...... 

+ ...... 
. .  

I I ,  - A- 
-k  -k '  ~' 

Figure 1. (f) DifFuon: (b) Cooperon. 

For an isotropic disordered system, Fukuyama [7] has derived explicit expressions for 
the diffuson and the Cooperon. Using a similar procedure. we can calculate the functions 
for them for a tunnelling superlattice with an arbitrary band structure. The series of ladder 
diagrams shown in figure l(a) is summed as 
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where A(q,  iol) is defined by 

and or = 2lirT. Since both 0,s; (p = x. y ,  z) and loll are assumed to be much smaller 
than I/ro, when the product of two Green functions on the right-hand side of equation (6) 
is expanded as a power series of q and loll, only their lowest-order terms need to be kept. 
We first consider the case of E, < 0 and E, + o[ > 0. In this case, substituting equation 
(4) into equation (6), and replacing the summation over k in equation (6) by the integral 
[ N I  deb, we obtain 

where w(k) = aEk/ak is the velocity for the electron in the state k, and the integration 
with respect to 0 is over the  angle^ between V(k) and the z axis. Equation (7) is easily 
evaluated, yielding 

A(q,  io!) = 2irroN1(1 - IM% - D,qiro) (8) 

where D,q: = DUq;  + D,q;. Substituting equation (8) into equation (5) and using the 
relation (ZTO)-' = nniU2Nl,  we get the final expression for the diffuson as 

D(q,  i o d  = [&N\i,&D,q; + lo~l)l-'. (9) 

It is easily shown from a similar derivation that, in the case of E, > 0 and w, +en < 0, 
the same result as equation (9) holds; but in the case of E,(E, + 01) z 0, the result is quite 
different, A(q, io,) = 0, and so D ( q ,  iwi) = ( 2 n N l ~ o ) - ' .  

Following the derivation as above, we can obtain the expression for the Cooperon as 
shown in figure l (b) :  

C(q, io{) = [ 2 x N l r ~ ( D , q ~  + /oil+ 7;')1-' for E,(E, + w l )  < 0. (10) 

Here rl. is the dephasing time. If the diffusion constant is isotropic, D ,  = D for any p, 
equations (9) and (IO) reduce to the isotropic results obtained by Fukuyama [7]. It should 
be emphasized that our derivation above does not depend on any special band structure. So, 
we have demonstrated that both equations (9) and (IO) are suitable for arbitrary dispersion 
relations provided that the condition 

We now calculate the interaction correction to the self-energy. In disordered metals, 
the mutual interaction u(q)  is dynamically screened and changed to the effective interaction 
u(q ,  io!). For a clean system the lowest-order contributions in interaction with the self- 
energy are given by the well known Hartree-Fock processes. In the presence of randomness, 
however, these Hartree-Fock processes are coupled with diffusons and Cooperons, and 
the self-energy corrections due to the mutual interactions are given by figure 2 in [6], 
the corresponding effective interaction constants being parametrized as gl, gz, g3 and g4, 
respectively [6]. As an example, the gl processes (see figure 2) represent the Fock processes 

+ 4) < 0 is satisfied. 
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coupled with the diffusons, ind the contribution to the self-energy from figure 2(a) can be 
evaluated as follows: 

X G(k' + Q, ien + iol)G(k", ie,)G(k" + q, ie. + iwr). (11) 

Substituting equations (4) and (9) into equation (ll), and taking the approximation 
G(k + q, ien + iwl) N -2iro sgn(e. + @I), we replace the summations over k' and k" 
by the integrals 1 N I  d& and I NI d.$, respectively, and get 

where CO = -i(Zro)-'sgn(e,) is the self-energy due to impurity scattering in the absence 
of interactions, and 1, = (D , l r~ ) ' / 2  is the mean free path along the plan- direction. The 
summation over wl is from 21rT to 1/70. In the region of T << l /ro,  the summation in 
equation (12) can be replaced by integration over U ,  yielding 

l a )  \ bi 

Figure 2. Interaction corrections to the selfenergy due to 81 processes. 

where the function F ( x ,  y) is given by 

Since the evaluation of the contribution.for figure 2(b) is verysimilar to that for figure 2(a), 
we simply write down its expression: 
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Summing equations.(13) and (15), we obtain the interaction correction to the self-energy 
due to gl processes, 8x1 = 6C1, + A&,, as follows: 

Y H Yung ef ul 

Cooperons are coupled with the interactions as shown in g2 and g4 processes. Their 
contribution will vanish in the region of T << I/q,, where rv comes from perturbations that 
destroy the time-reversal symmetry. In the case of 1/?, << T << 1/70, calculations similar 
to that for g,  processes give the contributions due to gi processes (i = 2, 3,4): 

By summing these SE,/Eo, the total interaction correction to the self-energy is given by 

where g = gl + gz - 2(g3 + g4) with the factor -2 coming from the spin degeneracy in 
the Hartree processes of our spin-independent interactions. If we define C = CO + SE = 
4(2r)-'sgn(&), the renormalized scattering rate due to mutual interactions can be obtained 
as 

The quantum correction to the density of states at the Fermi surface, SN/No, due to 
interactions is straightforwardly obtained from a knowledge of SE/Eo through the relation 

G N / N o  = -SC/Co. (19) 

This equation has been shown to hold for isotropic systems [7]. Here we will show 
that equation (19) is a general relation in the lowest approximation and it still holds for 
anisotropic layered systems. To see clearly the relationship between GN/No and SC/&, 
we start from the definition of the density of states at the Fermi surface, 

2 N = -- Im 1 GR(k, 0)  
H k  

where GR(k. 0) = (-CL. - ER)-' is the interaction-correction retarded Green function, 
ER = -i(27)-' is the interaction-correction retarded self-energy, and 
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- O.L 
$ 0 . 6 L \  c , ' -  

0.2 Figure 3. The temperature dependences of the function 
F ( I q ) ,  Trn) for several values of fro. For t q  = 
0.05, the lowest curve shows logarithmic behaviour, 
while for fro = 10 the top curve is sqmre-root-lik&, 

0 0.02 0.ob 0.06 0 08 0 10 conesponding lo ZD and 3D behaviour, respectively. The 
middle curve corresponds to t i n  = I .  TT, 

with CO" = -i(Zzo)-' being the retarded self-energy due to impurity scattering. The 
expansion of equation (21) to the lowest-order approximation in 6C/& is 

Substituting equation (22) into equation (ZO), and replacing the summation over k in 
equation (20) by the integral 1 N I  d&, we finally obtain 

N = N o ( 1 - 8 C / Z o )  or S N j N o  = -6E/Eo 
where NO = ZN,, and we have used 

and 

It is worth emphasizing that the derivation above does not also depend on the energy band 
structure, so that equation (19) is a general relation. 

Now, we have obtained the analytical expressions for the interaction corrections to 
the self-energy and the density of states at the Fermi surface for a disordered tunnelling 
superlattice. They depend on the interlayer coupling t and the temperature T .  In order to 
compare our results with that of 2D and 3D systems, we take the following limits of the 
function F ( x ,  y ) :  

The function F(rr0, Tto) is shown in figure 3. From equation (23), we can see that, when 
the interlayer coupling t is so large that t >> lp0, the first limiting result corresponds 
to anisotropic 3D behaviour; while when t is small enough so that f << (T/ro) l /z  << 
I/Q, the second limiting result corresponds to isotropic ZD' behaviour. Therefore the 
interaction corrections to self-energy and density of states at the Fermi surface behave 
as 3D (proportional to changing to 2p (proportional to In T )  when the bandwidth 2t 
decreases from r >> 1/70 to t << (T/To)"', and a dimensional crossover occurs at t I/ro. 
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4. Interaction correction to the conductivity 

The conductivity tensors are determined by the well known Kubo formula 

Y H Yang et ai 

where w is the frequency of the applied electric field, OJA = 2AnT ,  and n(k,  k'; ioA) is 
the polarization part due to mutual interaction and impurity scattering. The interaction 
corrections to the conductivities due to gi processes (i = 1 , 2 , 3 , 4 )  have been given by 
figures 4-9 in [6] .  For the anisotropic layered systems under consideration, we have 
calculated contributions from these processes, and the evaluations are very elaborate and 
lengthy. As an example, in the appendix, we will evaluate only the contribution from one 
of the gl processes. For the contributions from other processes including gi (i = 1 ,2 ,3 ,4 ) ,  
since their derivations are somewhat similar to that given in the appendix, we simply write 
down their expressions as follows: 

(2%) 

8ff4f/un = -8gzA + 18gzC1, (25b) 

S ~ l ~ l ~ i l  = 12g3Bn ~ u : / u ~  = 2 4 g ~ B ,  (254 

SU;/Ull = 16g4A - 36g4Cl (254 

where 

~ ~ l ~ / ~ l i  = -6giB11 80; 1 /U, = -12gl Bz 

h:/a; = -8gzA + 36gzCz 

~ u $ / o ~  = 16g4A - 72g4C2 

In the region of l / ~ ~  << T < l / r o ,  all the summations over o1 and q in equations (26a)- 
(26e) may be evaluated. We obtain 
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Here the functions f ( x ,  y )  and @ ( x ,  y) are given by 

+ ylZH2x3[(x2x2 + 4sy)- '  - (712x2 + 21-9. 

Substituting equations (27n) and (27b) into equations (25a)-(25d), we get the total 
corrections to the conductivities, 8611 = Cf=, Sui and &U, = 

(29) 

4 .  8u;: 

Equations (30a) and (30b) are the main results we obtain in this section. They are 
general expressions for the interaction corrections io anisotropic conductivities in disordered 
tunnelling superlattices provided that the band theory and the Bloch-Boltzmann picture hold 
true. So, it is expected that in the two limiting cases of tro >> 1 and fro << 1, equations 
(30u) and (306) should reduce to the well known forms for 3D and 2D systems, respectively. 
To verify this point, it is necessary to discuss the asymptotic behaviour of functions ~ f (x, y) 
and @(x, y )  given in equations (28) and (29). First, in the limit where k >> 1, together with 
y <<~l, we have 

f ( x ,  Y )  = @ ( x ,  Y) = 1 - (27Y)1'2 (31) 

which is independent of x. Secondly, in the opposite limit where x 2  << y << 1, we have 

With the aid of equations (31)-(33), the expressions for 6 q / q  and Saz/% become 

and 
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For large t (tso >> 1) the system can be regarded as an anisotropic 3D system. In this 
limit the interaction correction to the conductivities given in equation (34) is proportional to 
( ? X T T ~ ) ' / ~  - 1, which is just the familiar behaviour of a 3D system. Moreover, the scaling 
relation (1)  holds in this case, indicating that for anisotropic 3D systems the scaling theory of 
localization and the interaction theory have the same conclusion that the scaling behaviour 
is unaffected by anisotropy. The latter is a new result in the present paper, while the former 
is well known. On the other hand, for small t (tso << 1) the tunnelling superlattice becomes 
a quasi-20 system, and equation (35) yields 6u11/q cx ln(2xTro), which is characteristic 
of ZD behaviour. It is easy to see that in this case the scaling relation (1) no longer holds. 
Its invalidity may stem from the consideration that when the interlayer coupling t is small 
enough, the Bloch-Boltzmann picture breaks down for the out-of-plane conduction. Finally, 
in the intermediate region o f t  between the two limits, the analytical expressions (30u) and 
(30b) for 6 q  and &uz describe the crossover behaviour of their temperature dependences 
from 3D to 2D systems with decreasing 2 .  It is worth mentioning that in this transition region 
from 3D to ZD behaviour the scaling relation (1) does not seem to hold. This indicates that 
the conclusion that the scaling behaviour is unaffected by anisotropy is suitable only for the 
limit of ir0 >> 1. 

Y H Yung et ul 

5. Summary 

In this paper, to the lowest order af mutual interaction, we have calculated the quantum 
corrections to the self-energy, the density of states at the Fermi surface and the anisotropic 
conductivity tensor in a disordered tunnelling superlattice. The analytical expressions for 
these interaction corrections as functions o f t  and T are obtained for the first time. The 
temperature dependences of these corrections are shown to be dependent upon the interlayer 
coupling t and change from 3D to ZD behaviour with decreasing t.  

In the weakly localized regime of isotropic disordered systems, the expansion parameter 
for the perturbation theory is (6Fs~)-1.  However, in  the present model, which may be highly 
anisotropic, the small parameter is chosen as [ N I D ~ l ( D : ~ o ) ' ~ z ] - ' ,  which is proportional to 
( 6 ~ r ~ ) - ' ( t s ~ ) - ' .  if t 2 11~0; while in the case o f t  << (T/ro)'12 << 1 fro. the small parameter 
becomes (N~uDl l ) - ' ,  which is proportional to (EFT&'. 

Another conclusion of our work is thaf in the interaction theory, the scaling relation 
(1) does not generally hold, but does hold only for the limit o f t  >> l lso,  which is the 
same as in the weak-localization theory [13]. In both theories, the invalidity of equation 
(1) is apparent from the smallness of the miniband in the tunnelling superlattice where the 
anisotropic effective-mass approximation is not appropriate. 

in1 I b l  I C 1  

Figure 4. A diagram for conductivity among 61 processes. 
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It is important to point out that, in the extreme 2D limit, the mean free path for motion 
along the z direction l ,  - @a is much less than the lattice spacing and therefore much 
less than the Fermi wavelength, invalidating a quasiclassical treatment, which leads to the 
failure of Boltzmann transport theory in this limit. Another limitation of our theory is that 
the model of isotropic impurity scattering is not very realistic in the extreme 2D limit, when 
the scattering cross section for processes involving momenta k and k' parallel will surely 
be different from the ones involving momenta changing from parallel to perpendicular to 
the layers. Considering these limitations. some refined theory is necessary. 
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Appendix 

As an example the contribution to the conductivity from the process of figure 4(a) in 
161, which is one of the gl processes, will be evaluated. The frequency and momentum 
dependences are explicitly shown in figure 4, where R and A represent the retarded and 
advanced Green functions, respectively, and wA > 0. 

The polarization part n(k, IC'; ioA) in this diagram is 

n(k.  IC'; iwn). = -IT' C C G(q, i&)P(q,  iwl)D(q, iuA + iw) ~. 
q en(U1 

x G(k,  ie,)G(k, isn + ioA)G(k + q, ic. + i q  + iwl) 

x C(IC', ie,)G(k', isa + ioA)C(IC' + q, ic. + iwA +iwl)  (AI) 

where r(q, iwl) is the function for the interaction vertex, and is easily shown to be 

r(4. iw) = [rdD,q: + lo~d)l-~.  (A21 

Substituting equations (9) and (A2) into equation (Al), we have 

The condition <,,(E, + WA + U,) < 0 as. well as (en + WA)(E,,  + OJA +U, )  < 0 leads to the 
following classification of the regions of E, and ut: 

. 

(i) WI < -U, 0 < cn < -U, - wA,  
(ii) q > 0, -oh -col < E,, < -wA. 
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They correspond to figures 4(b)  and ( c )  respectively. In the summations over k and IC’ in 
equation (A3), by expanding in terms of q to the lowest order and replacing the summations 
over k and k‘ by the integrals 

Y H Yang et a1 

N I  dtk and N I  dtk, respectively, we obtain 

where O(0) and O(w:) represent the zeroth-order and second-arder terms of mi, respectively. 
Substituting equation (A5) into equation (24), we get the contribution to the planar 
conductivity from this diagram: 

Sull(tigure 4)/011 = 3gl BII. 

A similar evaluation leads to 

Gu:(figure 4)/uz = 6g1B2. 

The expressions for 511 and E: have been given in equations (266) and (26c), respectively. 
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